APPENDIX D LEVEL OF SERVICE CALCUATIONS FOR FINAL EIR

HCM ALTERNATIVE METHOD B

UCSC Existing Conditions - May 2004 AM Peak Hour

Level Of Service Computation Report

2000 HCM Operations Method (Base Volume Alternative)												
*****											****	****
Intersection												
*****	*****	****	*****	: * * * * * *	****	****	*****	****	****	*****	****	*****
Cycle (sec):		10				Critica					0.7	
Loss Time (se		1	6 (Y+R=	=4.0 s	sec)	Average	e Dela	y (se	ec/veh)	:	35	5.2
Optimal Cycle						Level						D
*****	*****	****	****	* * * * *	****	****	****	****	****	****	****	****
Approach:	Nor	th Bo	und	Sou	ith Bo	und	Εa	st Bo	ound	₩e	st Bo	ound
Movement:	L -	- Т	- R	L -	- T	- R	L -	т	- R	L -	T	- R
Control:						ıase				Pr	otect	ed
Rights:	-	Inclu			Inclu			Inclu			Inclu	
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	1 (0 0	1 0	1 (1!	0 0	1 () 1	1 0	1. 0	1	1 0
Volume Module	•		•	•		•						
Base Vol:	59	168	92	201	110	49	83	996	52	151	757	174
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	59	168	92	201	110	49	83	996	52	151	757	174
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adi:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	59	168	92	201	110	49	83	996	52	151	757	174
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	59	168	92	201	110	49	83	996	52	151	757	174
PCE Adj:	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:			92	201	110	49	83	996	52	151	757	174
Saturation F	•			'		,	•		•	•		•
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.94	0.94	0.95	0.92	0.92
Lanes:		0.65	0.35	1.39	0.42	0.19	1.00	1.90	0.10	1.00	1.63	0.37
Final Sat.:			637	2513	768	342	1805	3407	178	1805	2853	656
Capacity Ana	•			'		,	•			•		•
Vol/Sat:	-	0.14	0.14	0.08	0.14	0.14	0.05	0.29	0.29	0.08	0.27	0.27
Crit Moves:			****			****		***	*	***	t-	
_	18.3	18.3	18.3	18.1	18.1	18.1	7.0	37.0	37.0	10.6	40.6	40.6
Volume/Cap:		0.79	0.79	0.44	0.79	0.79	0.65	0.79	0.79	0.79	0.65	0.65
Delay/Veh:		52.3	52.3		48.8	48.8		31.4		65.9	25.2	25.2
User DelAdj:			1.00		1.00	1.00		1.00		1.00	1.00	1.00
AdjDel/Veh:		52.3	52.3		48.8	48.8		31.4			25.2	25.2
LOS by Move:		D	D	D	D	D	Е	C	C	E	С	С
HCM2kAvqQ:	2	10	10	4	10	10	4			7	13	13
******										****	* * * *	*****
Note: Queue												
*****									*****	****	****	*****

UCSC Existing Conditions - May 2004

PM Peak Hour Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) **************** Intersection #14 Mission / Bay ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.942 Loss Time (sec): 16 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 136 Level Of Service: ************************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Split Phase
 Split Phase
 Protected
 Protected

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0< Volume Module: Initial Bse: 75 156 42 278 177 128 161 1037 73 189 1064 163 PHF Volume: 75 156 42 278 177 128 161 1037 73 189 1064 163 Reduct Vol: 0 0 0 Reduced Vol: 75 156 42 0 0 0 128 161 1037 0 73 0 0 0 0 0 278 177 189 1064 163 Final Vol.: 75 156 42 278 177 128 161 1037 73 189 1064 163 -----|----| Saturation Flow Module: Final Sat.: 1805 1449 390 2357 716 517 1805 3339 235 1805 3068 470 -----|----|-----| Capacity Analysis Module: Vol/Sat: 0.04 0.11 0.11 0.12 0.25 0.25 0.09 0.31 0.31 0.10 0.35 0.35 Crit Moves: **** **** **** Green Time: 11.4 11.4 11.4 26.3 26.3 26.3 9.5 34.6 34.6 11.7 36.8 36.8 Delay/Veh: 42.0 118 117.6 31.1 68.6 68.6 130.1 41.0 41.0 92.7 47.9 47.9 AdjDel/Veh: 42.0 118 117.6 31.1 68.6 68.6 130.1 41.0 41.0 92.7 47.9 47.9 LOS by Move: D F F C E HCM2kAvgQ: 2 13 13 6 22 E F D D F D 22 11 23 23 11 28 D ************************* Note: Queue reported is the number of cars per lane. *************************

MITIG8 - 2020 AM No ProjectMon Aug 7, 2006 21:33:58 Page 1-1 ______ 2020 AM No Project ______ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) **************************** Intersection #14 Mission / Bay ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.966 Loss Time (sec): 16 (Y+R=4.0 sec) Average Delay (sec/veh):
Optimal Cycle: 150 Level Of Service: ******************** Street Name: Bay SR 1 - Mission
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R Volume Module: Initial Fut: 73 208 122 248 136 71 115 1381 69 214 1115 230 71 115 1381 0 0 0 69 214 1115 PHF Volume: 73 208
Reduct Vol: 0 0 122 248 136 230 0 0 0 0 0 0 Reduced Vol: 73 208 122 248 136 71 115 1381 69 214 1115 Saturation Flow Module: Adjustment: 0.95 0.95 0.95 0.97 0.97 0.85 0.95 0.94 0.94 0.95 0.93 0.93 Lanes: 1.00 0.63 0.37 1.29 0.71 1.00 1.00 1.90 0.10 1.00 1.66 0.34 Final Sat.: 1805 1132 664 2378 1304 1615 1805 3414 171 1805 2915 601 Capacity Analysis Module: Vol/Sat: 0.04 0.18 0.18 0.10 0.10 0.04 0.06 0.40 0.40 0.12 0.38 0.38 Crit Moves: **** * * * * *** Green/Cycle: 0.19 0.19 0.19 0.11 0.11 0.11 0.08 0.42 0.42 0.12 0.46 0.46 AdjDel/Veh: 34.5 107 107.2 105.1 105 43.2 84.1 51.5 51.5 132.3 26.9 26.9

Note: Queue reported is the number of cars per lane.

LOS by Move: C F F F F D F D D F C HCM2kAvgQ: 2 19 19 14 14 3 7 35 35 15 21

C

2020 AM Plus Project (Campus Growth + Delaware) ______

> Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)

**************************** Intersection #14 Mission / Bay

************************ Cycle (sec): 100 Critical Vol./Cap.(X): 1.015

Loss Time (sec): 16 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 180 Level Of Service: **********

Street Name: Bay SR 1 - Mission
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R _____|___|___|

Control: Split Phase Split Phase Protected Protected Rights: Include Include Include Include Include Lanes: 1 0 0 1 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 -----|----|-----||-------| Volume Module:

Initial Fut: 74 239 122 274 142 115 148 1402 69 214 1220 372

372 0 Reduced Vol: 74 239 122 274 142 115 148 1402 69 214 1220 MLF Adj:

Final Vol.: 74 239 122 274 142 115 148 1402 69 214 1220 372 Saturation Flow Module:

Adjustment: 0.95 0.95 0.95 0.97 0.97 0.85 0.95 0.94 0.94 0.95 0.92 0.92 Lanes: 1.00 0.66 0.34 1.32 0.68 1.00 1.00 1.91 0.09 1.00 1.53 0.47 Final Sat.: 1805 1194 609 2423 1256 1615 1805 3417 168 1805 2670 814

-----|----|-----|-----| Capacity Analysis Module:

Vol/Sat: 0.04 0.20 0.20 0.11 0.11 0.07 0.08 0.41 0.41 0.12 0.46 0.46 **** **** Crit Moves: Green/Cycle: 0.20 0.20 0.20 0.11 0.11 0.11 0.08 0.41 0.41 0.12 0.45 0.45 LOS by Move: C F F F F D F E E F F F HCM2kAvgQ: 2 25 25 17 17 5 13 40 40 16 47 47 ***********************

Note: Queue reported is the number of cars per lane.

2020 PM No Project Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ******************** Intersection #14 Mission / Bay ****************************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.055 Loss Time (sec): 16 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 180 Level Of Service: ****************************** Street Name: Bay SR 1 - Mission
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R -----||-----||------|
 Control:
 Split Phase
 Split Phase
 Protected
 Protected

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

 Lanes:
 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0
 1 0 1 1 0 0 1 1 0
 -----|----|-----|------| Volume Module: Base Vol: 93 193 52 343 219 158 213 1371 97 250 1407 215 Initial Fut: 93 193 68 343 219 164 224 1502 97 259 1449 215 PHF Volume: 93 193 68 343 219 164 224 1502 97 259 1449 215 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 93 193 68 343 219 164 224 1502 0 0 0 97 259 1449 215 MLF Adj: Final Vol.: 93 193 68 343 219 164 224 1502 97 259 1449 215 -----|----||------| Saturation Flow Module: Lanes: 1.00 0.74 0.26 1.22 0.78 1.00 1.00 1.88 0.12 1.00 1.74 0.26 Final Sat.: 1805 1350 476 2250 1436 1615 1805 3360 217 1805 3084 458 -----||-----| Capacity Analysis Module: Vol/Sat: 0.05 0.14 0.14 0.15 0.15 0.10 0.12 0.45 0.45 0.14 0.47 0.47 **** Crit Moves: **** **** Green/Cycle: 0.14 0.14 0.14 0.14 0.14 0.14 0.12 0.42 0.42 0.14 0.44 0.44 Volume/Cap: 0.38 1.05 1.05 1.05 1.05 0.70 1.06 1.05 1.05 1.06 1.06 1.06 Delay/Veh: 40.4 220 219.7 185.9 186 50.4 237.8 146 146.3 220.1 155 154.7 AdjDel/Veh: 40.4 220 219.7 185.9 186 50.4 237.8 146 146.3 220.1 155 154.7 LOS by Move: D F F F F D F F F F HCM2kAvgQ: 3 23 23 24 24 7 20 57 57 22 61 F *****************************

Note: Queue reported is the number of cars per lane.

MITIG8 - 2020 PM Project Mon Aug 7, 2006 21:26:11 Page 1-1 ______ 2020 PM Plus Project (Campus Growth + Delaware) _____ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ******************* Intersection #14 Mission / Bay ********************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.201 Loss Time (sec): 16 (Y+R=4.0 sec) Average Delay (sec/veh):
Optimal Cycle: 180 Level Of Service: ********* ************* Street Name: Bay SR 1 - Mission

Approach: North Bound South Bound East Bound West Bound

Movement: L - T - R L - T - R L - T - R -----|-----|------||-------||-------|
 Control:
 Split Phase
 Split Phase
 Protected
 Protected

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0< -----|----|-----|------| Volume Module: Initial Fut: 93 209 68 495 252 200 279 1621 98 259 1476 286 98 259 1476 0 0 0 PHF Volume: 93 209 68 495 252 200 279 1621 286 0 MLF Adj: Final Vol.: 93 209 68 495 252 200 279 1621 98 259 1476 286 Final Vol.: Saturation Flow Module: Adjustment: 0.95 0.96 0.96 0.97 0.97 0.85 0.95 0.94 0.94 0.95 0.93 0.93 Lanes: 1.00 0.75 0.25 1.33 0.67 1.00 1.00 1.89 0.11 1.00 1.68 0.32 Final Sat.: 1805 1381 449 2437 1241 1615 1805 3374 204 1805 2951 572 Capacity Analysis Module: Vol/Sat: 0.05 0.15 0.15 0.20 0.20 0.12 0.15 0.48 0.48 0.14 0.50 0.50 **** **** Crit Moves: Green/Cycle: 0.13 0.13 0.13 0.17 0.17 0.17 0.13 0.42 0.42 0.13 0.42 0.42 Volume/Cap: 0.41 1.20 1.20 1.20 1.20 0.73 1.20 1.15 1.15 1.15 1.20 1.20

Note: Queue reported is the number of cars per lane.

AdjDel/Veh: 41.5 448 447.9 420.5 420 49.8 447.5 299 299.3 357.2 399 398.8 LOS by Move: D F F F F D F F F F HCM2kAvgQ: 3 36 36 47 47 8 36 89 89 29 109

109

UCSC

Existing Conditions - May 2004 AM Peak Hour

_____ Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************************** Intersection #20 Mission / Chestnut ************************ Cycle (sec): 120 Critical Vol./Cap.(X): 0.740 Loss Time (sec): 12 (Y+R=4.0 sec) Average Delay (sec/veh):
Optimal Cycle: 82 Level Of Service: Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Split Phase
 Split Phase

 Rights:
 Include
 Ovl
 Include
 Ovl

 Min. Green:
 0 0 0 10 0 0 60 60 0 0 0 0
 0 0 0
 0

 Lanes:
 1 0 1 1 0 1 0 2 0 2 1 1 1 0 1 0 1 0 1
 0 1 1 0 1
 -----| Volume Module: >> Count Date: 13 Nov 2003 << PHF Volume: 90 409 24 81 269 1522 1377 359 40 8 367 Reduct Vol: Reduced Vol: 0 0 0 0 0 0 0 0 0 0 0 40 8 367 0 Final Vol.: 90 409 24 81 269 1522 1377 359 40 8 367 87 -----| Saturation Flow Module: Final Sat.: 1805 3383 198 1805 3610 2842 3473 1736 1615 77 3529 1615 Capacity Analysis Module: Vol/Sat: 0.05 0.12 0.12 0.04 0.07 0.54 0.40 0.21 0.02 0.10 0.10 0.05 Crit Moves: **** **** **** Green Time: 7.7 19.1 19.1 10.0 21.4 83.9 62.5 62.5 62.5 16.4 16.4 26.4 Volume/Cap: 0.78 0.76 0.76 0.54 0.42 0.77 0.76 0.40 0.05 0.76 0.76 0.24 Delay/Veh: 88.4 54.5 54.5 56.7 44.2 13.5 24.4 17.4 14.1 57.1 57.1 38.9 AdjDel/Veh: 88.4 54.5 54.5 56.7 44.2 13.5 24.4 17.4 14.1 57.1 57.1 38.9 LOS by Move: F D D E D B C B B E E D HCM2kAvgQ: 6 10 10 4 5 22 22 8 1 9 9 3 Note: Queue reported is the number of cars per lane.

Existing Conditions - May 2004 PM Peak Hour

Level Of Service Computation Penart

		L	evel O	Ser	vice (Computa	tion F	Report	:			
						(Base						
*****	****	****	*****	****	****	*****	*****	*****	*****	*****	****	*****
Intersection #	#20 N	Missic	n / Che	stnut	t							
*****	****	****	*****	****	****	*****	****	*****	*****	*****	****	*****
Cycle (sec):		12	0			Critic	al Vol	L./Car).(X):		0.6	71
Loss Time (se	ec):	1	.2 (Y+R=	=4.0 :	sec)	Averag	e Dela	ay (se	ec/veh)	:	34	1.3
Optimal Cycle	:	8	2			Level	Of Sei	cvice:	:			С
******	****	****	*****	****	****	*****	****	****	*****	*****	****	*****
Approach:	No	cth Bo	und	So	uth Bo	ound	Εa	ast Bo	ound	W∈	st Bo	ound
Movement:	L -	- Т	- R	L	- T	- R	ъ -	- Т	- R	L -	T	- R
											. -	
Control:	Pı	cotect	ed	P:	rotect	ted	Sp.	lit Pł	nase	Spl	it Ph	ase
Rights:		Inclu	ıde		Ovl			Incl	ıde		Ovl	
Min. Green:	0	0	0	10	0	0	60	60	0	0	0	0
Lanes:	1 (1	1 0	1 (0 2	0 2	1 1	L 1	0 1	0 1	. 1	0 1
Volume Module	:: >>	Count	Date:	1 Oc1	t 200	3 << '			•	•		
Base Vol:	118	307	35	45	349	1461	1235	466	92	12	449	54
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	118	307	35	45	349	1461	1235	466	92	12	449	54
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	118	307	35	45	349	1461	1235	466	92	12	449	54
Reduct Vol:	0	0	0	0	. 0	0	0	0	0	0	0	0
Reduced Vol:	118	307	35	45	349	1461	1235	466	92	12	449	54
PCE Adi:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:	118	307	35	45	349	1461	1235	466	92	12	449	54
Saturation Fl	ow Mo	dule:	•			,	t .		,	•		•
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	0.95	0.94	0.94	0.95	0.95	0.75	0.92	0.92	0.85	0.95	0.95	0.85
Lanes:	1.00		0.20	1.00	2.00	2.00	2.00	1.00	1.00	0.05	1.95	1.00
Final Sat.:	1805	3192	364		3610	2842	3484	1742	1615	94	3513	1615
Capacity Anal	vsis.	Modul	.e :			•	•		,	'		1
Vol/Sat:	0.07		0.10	0.02	0.10	0.51	0.35	0.27	0.06	0.13	0.13	0.03
Crit Moves:		****		***			***			***		
Green Time:	7.6	16.3	16.3	10.0	18.6	78.7	60.1	60.1	60.1	21.7	21.7	31.7
Volume/Cap:	1.03		0.71		0.62	0.78		0.53	0.11		0.71	0.13
Delay/Veh: 2			54.5		49.6	16.9		20.6	15.9	49.9		33.8
User DelAdj:			1.00		1.00	1.00		1.00	1.00		1.00	1.00
AdjDel/Veh: 2			54.5		49.6	16.9		20.6	15.9	49.9		33.8
LOS by Move:	F	D	D	D	D	В	C	C	В	D	D	C
HCM2kAvqQ:	12	8	8	2	7	23	19	12	2	10	10	2
*******												_
Note: Queue r	eport	ed is	the n	ımber	of c	ars per	lane					
					,							

MITIG8 - 2020 AM No ProjectMon Aug 7, 2006 21:32:34 Page 1-1 2020 AM No Project Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ************************ Intersection #20 Mission / Chestnut ************************* Critical Vol./Cap.(X): 1.034 Cycle (sec): 120 Loss Time (sec): 12 (Y+R=4.0 sec) Average Delay (sec/veh):
Optimal Cycle: 180 Level Of Service: ********************* Street Name: Chestnut SR 1 - Mission Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||------|
 Control:
 Protected
 Protected
 Split Phase
 Split Phase

 Rights:
 Include
 Ovl
 Include
 Ovl

 Min. Green:
 0 0 0 10 0 0 60 60 0 0 0 0
 0 0 0 0

 Lanes:
 1 0 1 1 0 1 0 2 0 2 1 1 1 0 1 0 1 0 1
 0 1 1 0 1
 -|-----||-----||-------||------| Volume Module: Base Vol: 120 545 32 107 356 2012 1820 475 53 9 406 96 Initial Fut: 120 551 33 107 368 2123 1882 475 53 10 414 96 53 PHF Volume: 120 551 33 107 368 2123 1882 475 0 0 0 0 0 0 10 414 0 Reduct Vol: 0 0 0 0 0 0 Reduced Vol: 120 551 33 107 368 2123 1882 475 53 10 414 96 MLF Adj: Final Vol.: 120 551 33 107 368 2123 1882 475 53 10 414 96 Saturation Flow Module: Adjustment: 0.95 0.94 0.94 0.95 0.95 0.75 0.91 0.91 0.85 0.95 0.95 0.85 1.00 1.89 0.11 1.00 2.00 2.00 2.00 1.00 0.05 1.95 1.00 Lanes: Final Sat.: 1805 3375 202 1805 3610 2842 3473 1736 1615 85 3521 1615 -----||-----||------| Capacity Analysis Module: Vol/Sat: 0.07 0.16 0.16 0.06 0.10 0.75 0.54 0.27 0.03 0.12 0.12 0.06 Crit Moves: **** **** Green/Cycle: 0.06 0.17 0.17 0.09 0.20 0.72 0.52 0.52 0.52 0.11 0.11 0.20 Volume/Cap: 1.03 0.94 0.94 0.67 0.51 1.03 1.03 0.52 0.06 1.03 1.03 0.29

Note: Queue reported is the number of cars per lane.

LOS by Move: F F F E D F F B B F F HCM2kAvgQ: 13 19 19 5 7 77 65 12 1 20 20

MITIG8 - 2020 AM Project Mon Aug 7, 2006 21:29:54 Page 1-1 _____ 2020 AM Plus Project (Campus Growth + Delaware) Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ********************* Intersection #20 Mission / Chestnut *********************************** Cycle (sec): 120 Critical Vol./Cap.(X): 1.159 Loss Time (sec): 12 (Y+R=4.0 sec) Average Delay (sec/veh):
Optimal Cycle: 180 Level Of Service: ********************** Street Name: Chestnut SR 1 - Mission Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|----|
 Control:
 Protected
 Protected
 Split Phase
 Split Phase

 Rights:
 Include
 Ovl
 Include
 Ovl

 Min. Green:
 0 0 0 10 0 0 60 60 0 0 0 0
 0 0 0 0

 Lanes:
 1 0 1 1 0 1 0 2 0 2 1 1 1 0 1 0 1 0 1
 0 1 1 0 1
 -----|----|-----||------| Volume Module: Base Vol: 120 545 32 107 356 2012 1820 475 53 9 406 Initial Fut: 122 551 33 107 368 2403 1934 483 53 10 458 96 0 96 MLF Adj: Final Vol.: 122 551 33 107 368 2403 1934 483 53 10 458 96 Saturation Flow Module: Adjustment: 0.95 0.94 0.94 0.95 0.95 0.75 0.91 0.91 0.85 0.95 0.95 0.85 Lanes: 1.00 1.89 0.11 1.00 2.00 2.00 2.00 1.00 1.00 0.04 1.96 1.00 Final Sat.: 1805 3375 202 1805 3610 2842 3473 1736 1615 77 3529 1615 -----||-----||------| Capacity Analysis Module: Vol/Sat: 0.07 0.16 0.16 0.06 0.10 0.85 0.56 0.28 0.03 0.13 0.13 0.06 Crit Moves: **** **** Green/Cycle: 0.06 0.19 0.19 0.10 0.24 0.74 0.50 0.50 0.50 0.11 0.11 0.21 Volume/Cap: 1.21 0.84 0.84 0.60 0.43 1.15 1.11 0.56 0.07 1.21 1.21 0.29

Note: Queue reported is the number of cars per lane.

LOS by Move: F E E E D F F C B F F D HCM2kAvgQ: 19 14 14 5 6 140 94 13 1 35 35 3

MITIG8 - 2020 PM No ProjectMon Aug 7, 2006 21:35:56 Page 1-1 2020 PM No Project ______ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ************************** Intersection #20 Mission / Chestnut ************************* Cycle (sec): 120 Critical Vol./Cap.(X): 1.038 Loss Time (sec): 12 (Y+R=4.0 sec) Average Delay (sec/veh):
Optimal Cycle: 180 Level Of Service: ************************ Street Name: Chestnut SR 1 - Mission Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Split Phase Split Phase Rights: Include Ovl Include Ovl Min. Green: 0 0 0 10 0 0 60 60 0 0 0 0 Lanes: 1 0 1 1 0 1 0 2 0 2 1 1 1 0 1 0 1 1 0 1 -----|----|-----||------| Volume Module: Initial Fut: 157 422 49 59 468 2001 1760 625 122 13 502 60 Reduced Vol: 157 422 49 59 468 2001 1760 625 122 13 502 MLF Adj: Saturation Flow Module: Adjustment: 0.95 0.93 0.93 0.95 0.95 0.75 0.92 0.92 0.85 0.95 0.95 0.85 Lanes: 1.00 1.79 0.21 1.00 2.00 2.00 2.00 1.00 1.00 0.05 1.95 1.00 Final Sat.: 1805 3183 370 1805 3610 2842 3480 1740 1615 91 3515 1615 -----||-----| Capacity Analysis Module: Vol/Sat: 0.09 0.13 0.13 0.03 0.13 0.70 0.51 0.36 0.08 0.14 0.14 0.04 Crit Moves: **** **** **** Green/Cycle: 0.08 0.16 0.16 0.10 0.19 0.69 0.50 0.50 0.50 0.13 0.13 0.24 LOS by Move: F E E D D F E C B F F HCM2kAvgQ: 17 12 12 2 10 70 55 20 2 26 26

Note: Queue reported is the number of cars per lane.

Note: Queue reported is the number of cars per lane.

UCSC

Existing Conditions - May 2004 AM Peak Hour

	AM Peak	Hour	
T	-1 05 0		
		omputation Report	
		Future Volume Alt	
******		* * * * * * * * * * * * * * * * * * *	*******
Intersection #19 Mission			

Cycle (sec): 120		Critical Vol./Cap	
Loss Time (sec): 9	(Y+R=4.0 sec)	Average Delay (se	
Optimal Cycle: 180		Level Of Service:	
*******	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * *	*******
Street Name: Ki:	ng - Union	٤	SR 1 - Mission
Approach: North Bound	d South Bo	und East Bo	ound West Bound
Movement: L - T -	R L - T	- R L - T	- R L - T - R
Control: Split Phase			
Rights: Include	-		
Min. Green: 0 0	0 0 0	0 0 0	0 0 0 0
Lanes: 0 0 1! 0			
Volume Module:	11	11 .	1.1
Base Vol: 1 2	6 900 0	16 3 1053	1 42 1396 200
		1.00 1.00 1.00	1.00 1.00 1.00 1.00
<u> </u>			the contract of the contract o
Initial Bse: 1 2	6 900 0	16 3 1053	
Added Vol: 0 0	0 0 0	0 0 0	0 0 0 0
PasserByVol: 0 0	0 0 0	0 0 0	0 0 0 0
Initial Fut: 1 2	6 900 0	16 3 1053	1 42 1396 200
3	.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00 1.00
PHF Adj: 1.00 1.00 1	.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00 1.00
PHF Volume: 1 2	6 900 0	16 3 1053	1 42 1396 200
Reduct Vol: 0 0	0 0 0	0 0 0	0 0 0 0
Reduced Vol: 1 2	6 900 0	16 3 1053	1 42 1396 200
PCE Adj: 1.00 1.00 1	.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00 1.00
MLF Adj: 1.00 1.00 1	.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00 1.00
Final Vol.: 1 2	6 900 0	16 3 1053	1 42 1396 200
Saturation Flow Module:			•
Sat/Lane: 1900 1900 1	900 1900 1900	1900 1900 1900	1900 1900 1900 1900
	.90 0.95 1.00	0.95 0.83 0.83	0.83 0.95 0.93 0.93
	.67 1.97 0.00	0.03 0.00 1.99	0.01 1.00 1.75 0.25
	146 3549 0	62 9 3129	3 1805 3098 444
Capacity Analysis Module:		1 1	11
	.01 0.25 0.00	0.26 0.34 0.34	0.34 0.02 0.45 0.45
•	.01 0.25 0.00	****	****
CLIC MOVED.	00 0 00 0 00		
· . -	.00 0.23 0.00	0.23 0.28 0.28	0.28 0.41 0.69 0.69
· •	.11 1.09 0.00	1.11 1.21 1.21	1.21 0.06 0.66 0.66
Delay/Veh: 838.9 839 83			425.4 21.6 11.4 11.4
_	.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00 1.00
= '			425.4 21.6 11.4 11.4
LOS by Move: F F	F F A	F F	F C B B
HCM2kAvgQ: 3 3	3 42 0	46 71 71	71 1 18 18
**********	*****	********	* * * * * * * * * * * * * * * * * * * *
Note: Queue reported is t	he number of ca	rs per lane.	

Note: Queue reported is the number of cars per lane.

Traffix 7.8.0115 (c) 2006 Dowling Assoc. Licensed to KIMLEY-HORN, SAN RAMON

Α

UCSC Existing Conditions - May 2004

PM Peak Hour Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #19 Mission / King-Union ******************* Cycle (sec): 120 Critical Vol./Cap.(X): 0.685 Loss Time (sec): 9 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 180 Level Of Service: ******************* Street Name: King - Union SR 1 - Mission

Approach: North Bound South Bound East Bound West Bound

Movement: L - T - R L - T - R L - T - F L - T - R _____|__|__|__|
 Control:
 Split Phase
 Split Phase
 Permitted
 Protected

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0< -----|----|-----|------| Volume Module: Initial Bse: 2 5 10 812 1 6 2 1163 2 26 1170 178 Final Vol.: 2 5 10 831 1 6 2 1190 2 27 1198 182 -----||-----||-----| Saturation Flow Module: Lanes: 0.12 0.29 0.59 1.98 0.01 0.01 0.00 1.99 0.01 1.00 1.74 0.26 Final Sat.: 205 512 1023 3587 4 26 6 3436 6 1805 3071 467 -----| Capacity Analysis Module: Vol/Sat: 0.01 0.01 0.01 0.23 0.23 0.23 0.35 0.35 0.35 0.01 0.39 0.39 Crit Moves: **** **** Green/Cycle: 0.01 0.01 0.01 0.22 0.22 0.22 0.33 0.33 0.33 0.37 0.70 0.70 Delay/Veh: 580.1 580 580.1 172.2 186 185.7 170.9 171 170.9 24.3 9.4 9.4 AdjDel/Veh: 580.1 580 580.1 172.2 186 185.7 170.9 171 170.9 24.3 9.4 LOS by Move: F F F F F F F F F C A HCM2kAvgQ: 4 4 4 34 36 36 36 50 50 50 1 13 9.4

Note: Queue reported is the number of cars per lane. ************************

	*	>	*	•	←	4	4	† -	<i>></i>	/	↓ *	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		47>		ሻ	ት ኩ			4		ሻ	4	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0		4.0	4.0			4.0		4.0	4.0	
Lane Util. Factor	grade transaction	0.95		1,00	0.95	The second state of the second se		1.00		0.95	0.95	has my sp Grand S
Frt		1.00		1.00	0.98			0.91		1.00	0.99	
Fit Protected		1.00		0.95	1.00			1.00		0.95	0.95	
Satd. Flow (prot)		3538		1770	3476			1688		1681	1679	
FIt Permitted		0.83		0.95	1.00	1 12		1.00		0.95	0.95	
Satd. Flow (perm)		2954		1770	3476			1688		1681	1679	
Volume (vph)	3	1426	1	56	1965	264	1	3	8	1190	0	21
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	- 3	1426	1	. 56	1965	264	- 1	3	- 8	1190	. 0	21
RTOR Reduction (vph)	. 0	0	0	0	7	0	0	7	0	0	1	0
Lane Group Flow (vph)	0	1430	0	56	2222	0	0	5	0	639	571	0
Turn Type	Perm			Prot			Split			Split		
Protected Phases		- 4		3	8		2	2		6	6	
Permitted Phases	4											
Actuated Green, G (s)		66.0		4.0	74.0			18.0		46.0	46.0	
Effective Green, g (s)		66.0		4.0	74.0			18.0		46.0	46.0	
Actuated g/C Ratio		0.44		0.03	0.49			0.12		0.31	0.31	
Clearance Time (s)		4.0		4.0	4.0			4.0		4.0	4.0	
Vehicle Extension (s)		3.0		3.0	3.0			3.0		3.0	3,0	
Lane Grp Cap (vph)		1300		47	1715			203		516	515	
v/s Ratio Prot				0.03	c0.64			c0.01		c0.38	0.34	
v/s Ratio Perm		0.48										
v/c Ratio		1.10		1.19	1.30			0.02		1.24	1.11	
Uniform Delay, d1		42.0		73.0	38.0			58.3		52.0	52.0	
Progression Factor		1.00		1.00	1.00			1.00		1.00	1.00	
Incremental Delay, d2		228.1		770.9	549.8			0.9		492.3	292.3	
Delay (s)		270.1		843.9	587.8			59.1		544.3	344.3	
Level of Service	alamana area ar ancan 'a	F		F	F		e aasta Amaaannoon	Е	atta Mondo mon fuel	F	F	
Approach Delay (s)		270.1			594.1			59.1			449.8	
Approach LOS		F			F			E			F	
Intersection Summary												
HCM Average Control [463.6	F	ICM Le	vel of Se	ervice		F			
HCM Volume to Capaci			1.12									
Actuated Cycle Length			150.0			ost time			12.0			
Intersection Capacity Ut	tilization	1	09.7%		CU Lev	el of Sei	vice		H			
Analysis Period (min)			60									
 Critical Lane Group 												

	الحر	→	*	*	4	1	1	†	/	1	 	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		474		*	† \$			4		ሻ	4	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0		4.0	4.0			4.0		4.0	4.0	
Lane Util. Factor	3 - 5 - 125 - 5 -	0.95		1.00	0.95			1.00	siènere e : No	0.95	0.95	
Frt		1.00		1.00	0.98			0.92	,	1.00	1.00	
Flt Protected	erry Trestig	1.00		0.95	1.00			0.99		0.95	0.95	
Satd. Flow (prot)		3538		1770	3471			1709		1681	1683	
Flt Permitted		0.84		0.95	1.00			0.99		0.95	0.95	
Satd. Flow (perm)		2957		1770	3471			1709		1681	1683	
Volume (vph)	3	1459	1	56	2139	315	3	7 .	13	1217	1	8
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	3	1459	1	- 56	2139	315	3	7	13	1217	1	8
RTOR Reduction (vph)	0	0	0	0	8	0	0	11	0	0	0	0
Lane Group Flow (vph)	0	1463	0	56	2446	0	0	12	0	641	585	0
Turn Type	Perm			Prot			Split			Split		
Protected Phases	en e	4		3	8		2	2		6	6	
Permitted Phases	4											
Actuated Green, G (s)		68.0		4.0	76.0			19.0	elelylye er tul e	43.0	43.0	
Effective Green, g (s)		68.0		4.0	76.0			19.0		43.0	43.0	
Actuated g/C Ratio		0.45	idenija debi	0.03	0.51			0.13	r. Balaj i u	0.29	0.29	
Clearance Time (s)		4.0		4.0	4.0			4.0		4.0	4.0	
Vehicle Extension (s)		3.0		3.0	3.0			3.0		3.0	3.0	
Lane Grp Cap (vph)		1341		47	1759			216		482	482	
v/s Ratio Prot				0.03	c0.71			c0.01		c0.38	0.35	
v/s Ratio Perm		0.49										
v/c Ratio		1.09		1.19	1.39			0.05		1.33	1.21	
Uniform Delay, d1		41.0		73.0	37.0			57.6		53.5	53.5	
Progression Factor		1.00		1.00	1.00			1.00	West	1.00	1.00	
Incremental Delay, d2		213.2		770.9	717.4			1.9		648.9	456.2	
Delay (s)		254.2		843.9	754.4			59.5		702.4	509.7	
Level of Service		F		F	F		1944 1114 and pales and trade and a cities a	E		F	F	namentario
Approach Delay (s)		254.2			756.4			59.5			610.4	
Approach LOS		F			F			Ε			F	
Intersection Summary												
HCM Average Control D	Delay		578.4	ŀ	HCM Le	vel of S	ervice		F			
HCM Volume to Capaci	ty ratio		1.20									
Actuated Cycle Length			150.0	(Sum of I	ost time	(s)		12.0			
Intersection Capacity U	tilizatior	1	16.5%		CU Lev	el of Se	rvice		STAN	ACHE!		
Analysis Period (min)			60									
c Critical Lane Group												

en e	>	-	•	*	←	•	4	†	<i>></i>	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		474		ሻ	ት ቕ			4>			₩.	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0		4.0	4.0	4		4.0		4.0	4.0	
Lane Util. Factor		0.95	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.00	0.95			1.00		0.95	0.95	
Frt		1.00		1.00	0.98			0.92		1.00	1.00	
Flt Protected		1.00		0.95	1.00			0.99		0.95	0.95	
Satd. Flow (prot)		3538		1770	3472			1709		1681	1683	macono com comun
Flt Permitted		0.86		0.95	1.00			0.99	artii teri	0.95	0.95	
Satd. Flow (perm)		3035	·····	1770	3472			1709		1681	1683	
Volume (vph)	2	1674	3	34	1612	235	3	7	13	1073		8
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	2	1674	3	34	1612	235	3	7	13	1073	1	8
RTOR Reduction (vph)	0	0	0	0	8	0	0	12	0	0	1	0
Lane Group Flow (vph)	0	1679	0	34	1839	0	0	11	. 0	566	515	0
Turn Type	Perm			Prot			Split			Split		
Protected Phases		4		3	- 8		2	2		6	6	
Permitted Phases	4										The second second second second	
Actuated Green, G (s)	katu da t	71.6		3.2	78.8			17.0		43.0	43.0	
Effective Green, g (s)		71.6		3.2	78.8			17.0		43.0	43.0	
Actuated g/C Ratio	na Na Tura. Ny faritr'o	0.47		0.02	0.52		godo, karan Malfalas Alfr	0.11		0.29	0.29	
Clearance Time (s)		4.0		4.0	4.0			4.0		4.0	4.0	
Vehicle Extension (s)		3.0		3.0	3.0			3.0		3.0	3.0	
Lane Grp Cap (vph)		1441		38	1814			193		479	480	
v/s Ratio Prot	Majak			0.02	c0,53			c0.01		c0.34	0.31	
v/s Ratio Perm		c0.55										
v/c Ratio	MAGE.	1.17		0.89	1.01			0.06		1.18	1.07	
Uniform Delay, d1		39.6		73.6	36.0			59.8	• • • • • • • • • • • • • • • • • • • •	53.9	53.9	
Progression Factor	errii.	1.00		1.00	1.00			1.00		1,00	1.00	
Incremental Delay, d2		329.1		415.6	98.6	Euratido de de concessor		2.4		405.7	248.8	
Delay (s)		368.7		489.2	134.6			62.1		459.6	302.7	
Level of Service		F		F	F	(11111111111111111111111111111111111111		E		F	F	
Approach Delay (s)		368.7			141.0			62.1			384.8	
Approach LOS		F			F		500 T - 11 T - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Ε			F	
Intersection Summary												
HCM Average Control D			279.1	ŀ	⊣CM Le	vel of Se	ervice		F			
HCM Volume to Capacit			1.05									
Actuated Cycle Length (150.8			ost time			16.0			
Intersection Capacity Ut	ilization		95.4%		CU Lev	el of Sei	vice		F			
Analysis Period (min)			60									
c Critical Lane Group												

	٠	→	•	*	4-	•	1	†	*	\	1.	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414		7	ት ቕ			4		1	4	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0		4.0	4.0			4.0		4.0	4.0	
Lane Util. Factor	Mundahka.	0.95		1.00	0.95		Mulani, Orto H	1.00		0.95	0.95	
Frt		1.00		1.00	0.98			0.92		1.00	1.00	
Flt Protected		1.00		0.95	1.00			0.99		0.95	0.95	
Satd. Flow (prot)		3538		1770	3468			1709		1681	1683	
FIt Permitted	Alama Perala	0.86	a a jaran	0.95	1.00			0.99		0.95	0.95	
Satd. Flow (perm)		3034		1770	3468			1709		1681	1683	
Volume (vph)	2	1866	3	34	1677	260	3	7	13	1231	1	8
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	2	1866	- 3	34	1677	260	3	7	13	1231	4.54.4	8
RTOR Reduction (vph)	0	0	0	0	8	0	0	12	0	0	0	0
Lane Group Flow (vph)	0	1871	0	34	1929	0	0	11	0	648	592	0
Turn Type	Perm			Prot			Split			Split		
Protected Phases		4		3	8		2	2		6	6	
Permitted Phases	4											
Actuated Green, G (s)	yketing:	70.6		3.2	77.8			17.0		44.0	44.0	
Effective Green, g (s)		70.6		3.2	77.8			17.0		44.0	44.0	
Actuated g/C Ratio		0.47		0.02	0.52			0.11		0.29	0.29	
Clearance Time (s)		4.0		4.0	4.0			4.0		4.0	4.0	
Vehicle Extension (s)		3.0		3.0	3.0			3.0		3.0	3.0	
Lane Grp Cap (vph)		1420		38	1789			193		490	491	
v/s Ratio Prot				0.02	c0.56			c0.01		c0,39	0.35	
v/s Ratio Perm		c0.62										
v/c Ratio		1.32		0.89	1.08			0.06		1.32	1.21	
Uniform Delay, d1		40.1		73.6	36.5			59.8		53.4	53.4	
Progression Factor		1.00		1.00	1.00			1.00		1.00	1.00	
Incremental Delay, d2		592.0		415.6	183.3			2.4		635.5	442.2	, to the same frames
Delay (s)		632.1		489.2	219.8			62.1		688.9	495.6	Julie II
Level of Service		F		F	F			E		F	F	# H 11 12.5
Approach Delay (s)		632.1			224.4			62.1			596.6	
Approach LOS		F			F			E			F	
Intersection Summary												
HCM Average Control D			463.5	H	HCM Le	vel of S	ervice		F			
HCM Volume to Capaci			1.17									
Actuated Cycle Length			150.8			ost time			16.0	No. 2		
Intersection Capacity Ut	tilizatior	1 1	02.3%		CU Lev	el of Sei	rvice		G			
Analysis Period (min)			60								distribution of the following	autorat un socionat
c Critical Lane Group										NEGOTION CONTRACTOR		

BALANCED ON-CAMPUS INTERSECTIONS

UCSC LRDP EIR Response to Comments 2020 Wihtout Project AM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) Intersection #1 Coolidge/Campus Facilities 60 Cycle (sec): Critical Vol./Cap.(X): 0.708 Loss Time (sec): 12 (Y+R=0.0 sec) Average Delay (sec/veh):
Optimal Cycle: 53 Level Of Service. ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Protected Protected Protected Include Include Protected Include Rights: Include Include Min. Green: 0 0 1 0 0 1 0 Volume Module: 5 737 Base Vol: 50 17 272 26 1 1 3 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Initial Bse: 5 737 50 17 272 2 26 5 1 1 3 40 0 : "0 0 Added Vol: 0 0 . ? 0 PasserByVol: 0 0 0 Ó 0 0 Ö 0 Initial Fut: 5 737 / 50 17 272 1 1. 3 2 26 5 40 PHF Adj: 2 PHF Volume: 1 4 32 6 910 62 21 336 1 0 62 0 0 0 4 0 Reduct Vol: 0 0 . 0 0 0 0 6 910 21 336 2 Reduced Vol: 32 6 PCE Ad1: MLF Adj: Final Vol.: 6 910 62 1 4 2 21 336 1. 32 6 49 · Saturation Flow Module: Sat/Lane: Adjustment: 0.95 0.99 0.99 0.95 1.00 1.00 0.95 0.95 0.95 0.95 0.87 0.87 lanes: 1.00 0.94 0.06 1.00 0.99 0.01 0.17 0.50 0.33 1.00 0.11 0.89 Final Sat.: 1805 1761 120 1805 1891 7 300 900 600 1805 183 1464 Capacity Analysis Module: Vol/Sat: 0.00 0.52 0.52 0.01 0.18 0.18 0.00 0.00 0.00 0.02 0.03 0.03 Crit Moves: **** **** Green/Cycle: 0.01 0.73 0.73 0.02 0.73 0.73 0.01 0.01 0.01 0.04 0.05 0.05 Volume/Cap: 0.24 0.71 0.71 0.71 0.24 0.24 0.71 0.41 0.41 0.41 0.71 0.71 Delay/Veh: 2.7 149.6 43.9 43.9 31.4 53.7 53.7 34.2 6.2 6.2 85.9 2.7 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 AdjDel/Veh: 34.2 6.2 6.2 85.9 2.7 2.7 149.6 43.9 43.9 31.4 53.7 53.7 LOS by Move: HCM2kAvgQ: 0 11 2 1 11 1 Note: Queue reported is the number of cars per lane.

Traffix 7.8.0115 (c) 2006 Dowling Assoc. Licensed to KIMLEY-HORN, SAN RAMON

UCSC LRDP EIR Response to Comments 2020 + Project With Balanced Volumes Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) Intersection #1 Coolidge/Campus Facilities ***************************** Cycle (sec): 60 Critical Vol./Cap.(X): 0.924 Loss Time (sec): 12 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 60 Level Of Service: 19.3 ************************************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: Balanced AM Volumes 5 998 55 17 371 1 Base Vol: 1 3 32 Initial Bse: 5 998 55 17 371 1 1 3 2 32 5 40 PHF Adj: $0.81 \ 0.81 \ 0.81 \ 0.81 \ 0.81 \ 0.81 \ 0.81 \ 0.81 \ 0.81 \ 0.81 \ 0.81$ 1 1 4 2 40 6 0 0 0 0 0 0 0 1 1 4 2 40 6 68 21 458 0 0 0 PHF Volume: 6 1232 68 49 Reduct Vol: 0 0 0 0 0 0 0 Reduced Vol: 6 1232 68 21 458 1 49 PCE Adj: MLF Adj: Final Vol.: 6 1232 68 21 458 1 1 4 2 40 6 49 Saturation Flow Module: Lanes: 1.00 0.95 0.05 1.00 0.99 0.01 0.17 0.50 0.33 1.00 0.11 0.89 Final Sat.: 1805 1786 98 1805 1895 5 300 900 600 1805 183 1464 Capacity Analysis Module: Vol/Sat: 0.00 0.69 0.69 0.01 0.24 0.24 0.00 0.00 0.00 0.02 0.03 0.03 Crit Moves: **** *** Green/Cycle: 0.01 0.75 0.75 0.01 0.75 0.75 0.00 0.01 0.01 0.03 0.04 0.04 Volume/Cap: 0.32 0.92 0.92 0.92 0.32 0.32 0.92 0.63 0.63 0.63 0.92 0.92 39.0 16.7 16.7 183.5 2.6 2.6 299.6 109 108.7 48.2 118 117.7 Delay/Veh: AdjDel/Veh: 39.0 16.7 16.7 183.5 2.6 2.6 299.6 109 108.7 48.2 118 117.7 F A A F F 2 3 3 1 1 LOS by Move: D B В F HCM2kAvgQ: 0 25 25 1 1 1 **************************** Note: Queue reported is the number of cars per lane.

UCSC LRDP EIR Response to Comments 2020 Without Project PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ******************** Intersection #1 Coolidge/Campus Facilities ***************************** Cycle (sec): 60 Critical Vol./Cap.(X): 0.622 Loss Time (sec): 12 (Y+R=0.0 sec) Average Delay (sec/veh): Optimal Cycle: 45 Level Of Service: ****************** Volume Module: Base Vol: 4 562 35 12 670 0 1 0 76 Initial Bse: 4 562 35 12 670 1 0 0 9 76 0 31 0 0 0. 0 Added Vol: 0.0 Ω .0 0 0 . 0 PasserByVol: 0 0 0 0 -0 O 0 Ó 4 562 Initial Fut: 35 12 670 1 0 0. 76 9 31 5 694 43 0 0 0 PHF Volume: 15 827 1 0 0 11 94 0 0 1: 0 0 Reduct Vol: 0 0 0 : 0 0 5 694 43 15 827 Reduced Vol: 11 94 0 3.8 PCE Adj: MLF Adj: 5 694 43 15 827 1 0 0 11 94 0 38 Saturation Flow Module: Sat/Lane: Adjustment: 0.95 0.99 0.99 0.95 1.00 1.00 1.00 1.00 0.87 0.95 1.00 0.85 Lanes: 1.00 0.94 0.06 1.00 0.99 0.01 0.00 0.00 1.00 1.00 0.00 1.00 Final Sat.: 1805 1773 110 1805 1897 3 0 0 1644 1805 0 1615 Capacity Analysis Module: Vol/Sat: 0.00 0.39 0.39 0.01 0.44 0.44 0.00 0.00 0.01 0.05 0.00 0.02 Crit Moves: **** *** Green/Cycle: 0.00 0.69 0.69 0.01 0.70 0.70 0.00 0.00 0.01 0.08 0.00 0.09 Volume/Cap: 0.62 0.57 0.57 0.57 0.62 0.62 0.00 0.00 0.62 0.62 0.00 0.25 0.0 0.0 82.1 34.4 0.0 26.1 1.00 1.00 1.00 1.00 Delay/Veh: 127.9 5.3 5.3 55.3 5.7 5.7 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 5.7 AdjDel/Veh: 127.9 5.3 5.3 55.3 5.7 0.0 0.0 82.1 34.4 0.0 26.1 LOS by Move: E Α HCM2kAvgQ: 1 8 1 9 0 8 9 0 ****** Note: Queue reported is the number of cars per lane.

Traffix 7.8.0115 (c) 2006 Dowling Assoc. Licensed to KIMLEY-HORN, SAN RAMON

UCSC LRDP EIR Response to Comments 2020 + Project With Balanced Volumes Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ******************************** Intersection #1 Coolidge/Campus Facilities ************************* Cycle (sec): 60 Critical Vol./Cap.(X): Loss Time (sec): 12 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 60 Level Of Service: 14.0 ************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____ Volume Module: Balanced PM Volumes Base Vol: 4 737 41 12 942 1 0 : 0 82 Initial Bse: 4 737 41 12 942 1 0 0 9 82 0 PHF Volume: 5 910 51 15 1163 1 0 0 11 101 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 5 910 51 15 1163 1 0 0 11 101 0 11 ______ Saturation Flow Module: Vol/Sat: 0.00 0.51 0.51 0.01 0.61 0.00 0.00 0.01 0.06 0.00 0.01 Crit Moves: **** Capacity Analysis Module:

AdjDel/Veh: 295.6 6.8 6.8 105.5 11.1 2.3 0.0 0.0 197.0 67.6 0.0 26.4

A 12 F B A A A F 1 19 0 0 0 1

LOS by Move: F A HCM2kAvgQ: 1 12

UCSC LRDP EIR Response to Comments 2020 Wihtout Project AM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ********************** Intersection #2 Coolidge/Hagar ******************* Cycle (sec): 60 . Critical Vol./Cap.(X): Loss Time (sec): 12 (Y+R=0.0 sec) Average Delay (sec/veh):
Optimal Cycle: 60 Level Of Service: North Bound South Bound East Bound West Bound L - T - R L - T - R L - T - R Approach: Control: Protected Protected Permitted Rights: Include Include Ovl 0 0 0 0 0 0 0 0 Min. Green: 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 0 11 0 0 Lanes: Volume Module: Base Vol: 444 316 18 2 96 3 0 173 3 0 0 21 Initial Bse: 444 316 18 2 96 173 5 0 0 0 0 Added Vol: 0 0 0 n . 0 PasserByVol: 0 0 Ó. -0 0 2 96 Initial Fut: 444 316 18 173 3 Ö 0 21 5 PHF Volume: 483 343 20 2 104 3 0 0 188 23 4 Saturation Flow Module: Adjustment: 0.91 0.95 0.95 0.97 1.02 1.02 1.00 1.00 0.85 0.85 0.85 0.85 Lanes: 1.00 0.95 0.05 1.00 0.97 0.03 0.00 1.00 1.00 0.70 0.13 0.17 Final Sat.: 1733 1712 98 1841 1871 58 0 1900 1615 1124 214 268 Capacity Analysis Module: Vol/Sat: 0.28 0.20 0.20 0.00 0.06 0.06 0.00 0.00 0.12 0.02 0.02 0.02 Crit Moves: **** **** Volume/Cap: 0.56 0.34 0.34 0.34 0.56 0.56 0.00 0.00 0.56 0.10 0.10 Delay/Veh: 11.5 6.5 6.5 58.9 29.6 29.6 0.0 0.0 23.6 19.4 19.4 19.2 AdjDel/Veh: 11.5 6.5 6.5 58.9 29.6 29.6 0.0 0.0 23.6 19.4 19.4 19.2 Α C LOS by Move: B E C C HCM2kAvqQ: Note: Queue reported is the number of cars per lane.

Traffix 7.8.0115 (c) 2006 Dowling Assoc. Licensed to KIMLEY-HORN, SAN RAMON

c c

UCSC LRDP EIR Response to Comments 2020 + Project With Balanced Volumes Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) Intersection #2 Coolidge/Hagar Cycle (sec): 60 Critical Vol./Cap.(X): 0.706 Loss Time (sec): 12 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 60 Level Of Service: ******************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Rights: Min. Green: Lanes: Volume Module: Balanced AM Volumes Base Vol: 562 456 21 2 260 0 0 0 99 25 Initial Bse: 562 456 21 2 260 0 0 99 25 4 5 PHF Adj: PHF Volume: 611 496 23 2 283 0 0 0 108 27 4 5 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 611 496 23 2 283 0 0 0 108 27 4 5 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.35 0.29 0.29 0.00 0.15 0.00 0.00 0.00 0.07 0.03 0.03 0.03 Crit Moves: **** ****

Traffix 7.8.0515 (c) 2006 Dowling Assoc. Licensed to KIMLEY-HORN, SAN RAMON

LOS by Move: B A A E C A A A D HCM2kAvgQ: 10 4 4 0 6 0 0 0 4

Note: Queue reported is the number of cars per lane.

арынынын түүнү керитерия солоонунун күчүнүнүн карарын арында барында болуу болуу байына байында байын байында ба

UCSC LRDP EIR Response to Comments 2020 Without Project PM Peak Hour

. . .

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) Intersection #2 Coolidge/Hagar *********************** Cycle (sec): 60 Critical Vol./Cap.(X):
Loss Time (sec): 12 (Y+R=0.0 sec) Average Delay (sec/veh):
Optimal Cycle: 60 Level Of Service: Critical Vol./Cap.(X): ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Permitted Permitted Rights: Include Include Include Ovl Rights: Min. Green: Volume Module: Base Vol: 286 284 23 9 296 2 0 2 396 27 Initial Bse: 286 284 23 9 296 2 0 2 396 27 2 0 0 0 0 0 Added Vol: 0 0 0 0 PasserByVol: 0 0 0 0 0 0 1 Initial Fut: 286 284 23 9 296 2 0 0 _ ∩ 0 Λ 0 2 396 27 User Adj: PHF Adj: PHF Volume: 311 309 25 10 322 2 0 2 430 29 Saturation Flow Module: 1.00 0.93 0.07 1.00 0.99 0.01 0.00 1.00 1.00 0.82 0.06 0.12 Final Sat.: 1733 1669 135 1841 1923 13 0 1900 1615 1298 96 192 Capacity Analysis Module: Vol/Sat: 0.18 0.18 0.18 0.01 0.07 0.17 0.00 0.00 0.27 0.02 0.02 0.02 Crit Moves: **** *** Green/Cycle: 0.23 0.44 0.44 0.01 0.22 0.22 0.00 0.35 0.35 0.35 Volume/Cap: 0.77 0.42 0.42 0.77 0.77 0.00 0.00 0.77 0.07 0.07 0.35 0.35 0.35 0.36 0.06 Delay/Veh: 30.0 11.9 11.9 41.2 30.2 30.2 0.0 12.8 23.7 13.1 13.1 12.6 AdjDel/Veh: 30.0 11.9 11.9 41.2 30.2 30.2 0.0 12.8 23.7 13.1 13.1 12.6 B D C 8 5 C 8 LOS by Move: C B A B HCM2kAvgQ: . 0 Note: Queue reported is the number of cars per lane.

Traffix 7.8.0115 (c) 2006 Dowling Assoc. Licensed to KIMLEY-HORN, SAN RAMON

```
UCSC LRDP EIR Response to Comments
                  2020 + Project With Balanced Volumes
 Level Of Service Computation Report
            2000 HCM Operations Method (Base Volume Alternative)
Intersection #2 Coolidge/Hagar
Cycle (sec): 60 Critical Vol./Cap.(X):
Loss Time (sec): 12 (Y+R=4.0 sec) Average Delay (sec/veh):
Optimal Cycle: 60 Level Of Service:
                                    Critical Vol./Cap.(X): 0.844
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R

        Control:
        Protected
        Protected
        Permitted
        Permitted

        Rights:
        Include
        Include
        Include
        Ov1

        Min. Green:
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0

        Lanes:
        1
        0
        0
        1
        0
        0
        1
        0
        0
        1
        0
        0
        1
        0
        0
        1
        0
        0
        1
        0
        0
        1
        0
        0
        1
        0
        0
        1
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0</td
Volume Module: Balanced PM Volumes
Base Vol: 190 535 23 9 506 0 0 0 404 32 2
Saturation Flow Module:
Adjustment: 0.91 0.95 0.95 0.97 1.02 1.00 1.00 1.00 0.85 0.80 0.80 0.80
Lanes: 1.00 0.96 0.04 1.00 1.00 0.00 0.00 1.00 1.00 0.84 0.05 0.11
Final Sat.: 1733 1739 75 1841 1937 0 0 1900 1615 1275 80 159
Capacity Analysis Module:
Vol/Sat: 0.12 0.33 0.33 0.01 0.28 0.00 0.00 0.00 0.27 0.03 0.03 0.03
Crit Moves: ****
                               ****
                                                    ****
Delay/Veh: 47.7 15.5 15.5 130.5 28.2 0.0 0.0 30.9 14.2 14.2 13.9
AdjDel/Veh: 47.7 15.5 15.5 130.5 28.2 0.0 0.0 0.0 30.9 14.2 14.2 13.9
LOS by Move: D B B F C A A A C B B B HCM2kAvgQ: 7 10 10 1 13 0 0 0 11 1 1 1
Note: Queue reported is the number of cars per lane.
```

መመስ እና የሚያስፈርብ እና አስተለው እና የሚያስፈርብ የተመሰው ነው የሚያስፈርብ የመጀመር መስመስ ነው የሚያስፈርብ የሚያስፈርብ የሚያስፈርብ መስመስ ነው። የሚያስፈርብ መጀመ የመጀመር እና የሚያስፈርብ እና የሚያስፈርብ የሚ

UCSC LRDP EIR Response to Comments 2020 Wintout Project AM Peak Hour

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative). *********** Intersection #3 Hagar/East Remote ******************* Average Delay (sec/veh): 1.8 Worst Case Level Of Service: Af 9.61 North Bound South Bound East Bound Approach: West Bound Movement: L - T - RL - T - R L - T - R L - T - R Stop Sign Control: Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include 0 0 1 0 0 Lanes: 0 0 0 0 0 1 0 0 0 1 0 0 11 0 1 Volume Module: Base Vol: n 0 0 115 0 0 0 58 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Initial Bse: 0 0 0 115 ٥ 0 0: 58 0 0 : 35 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 PHF Adj: 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 PHF Volume: 0 0 0 125 Ö 0 0 63 0 0 38 452 Reduct Vol: Ò 0 0 0 0 0 0 0 0 0 -0 0 Final Vol.: 0 0 125 0 0 ٥ 0 63 Λ 38 452 Critical Gap Module: Capacity Module: Cnflict Vol: xxxx xxxx xxxxx Potent Cap : xxxx xxxx xxxxx Level Of Service Module: 2Way95thQ: xxxx xxxx xxxxx Control Del:xxxxx xxxx xxxxx LOS by Move: * * A LT - LTR - RT Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT Shared LOS: * * * . * * ApproachDel: XXXXXX 9.6 XXXXXX XXXXXX ApproachLOS: Note: Queue reported is the number of cars per lane. ***********

UCSC LRDP EIR Response to Comments 2020 + Project With Balanced Volumes

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) Intersection #3 Hagar/East Remote Average Delay (sec/veh): 16.8 Worst Case Level Of Service: C[18.1] ************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Lanes: 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 Volume Module: Balanced AM Volumes Base Vol: 0 39 527 0 24 0 ... 0 0 75 PHF Volume: 0 42 573 0 26 0 0 0 82 0 0 Reduct Vol: 0 0 0 0 0 0 Final Vol.: 0 42 573 0 26 0 -0 0 0 0 0 0 0 82 0 Critical Gap Module: Critical Gp:xxxxx 6.5 6.2 xxxxx 6.5 xxxxx xxxxx xxxxx xxxxx 4.1 xxxx xxxxx FollowUpTim:xxxxx 4.0 3.3 xxxxx 4.0 xxxxx xxxxx xxxx xxxxx xxxxx 2.2 xxxx xxxxx Capacity Module: Cnflict Vol: xxxx 163 0 xxxx 163 xxxxx xxxx xxxx xxxxx xxxxx xxxxx 0 Potent Cap.: xxxx 733 900 xxxx 733 xxxxx xxxx xxxx xxxx 900 xxxx xxxxx Level Of Service Module: Control Del:xxxxx xxxx xxxxx xxxxx 10.6 xxxxx xxxxx xxxxx xxxxx 9.4 xxxx xxxxx LOS by Move: * * * * B * * * * A * * Movement: LT - LTR - RT Note: Queue reported is the number of cars per lane. *************************************

UCSC LRDP EIR Response to Comments 2020 Without Project PM Peak Hour

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) Intersection #3 Hagar/East Remote *************** Average Delay (sec/veh): 6.1 Worst Case Level Of Service: B[11.5] ************************* North Bound South Bound Approach: East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Stop Sign Control: Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Lanes: 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 11 0 1 Volume Module: Base Vol: 0 0 362 0 24 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Initial Bse: 0 0 0 362 0 0 ٥ 24 0 0 35 1.00 1.00 1.00 1.00 1.00 User Adi: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 PHF Adj: 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0 PHF Volume: 0 0 393 0 0 O 26 O 0 38 277 Reduct Vol: 0 0 0 0 Ó 0 0 0 0 Û 0 Final Vol.: 0 0 393 ٥ 0 0 26 ٥ ٥ 38 Critical Gap Module: Capacity Module: Cnflict Vol: xxxx xxxx xxxxx 64 xxxx xxxxx xxxx xxxx xxxx xxxx xxxx Potent Cap.: xxxx xxxx xxxxx 947 XXXX XXXXX XXXX XXXX XXXX XXXX XXXX Level Of Service Module: 2Way95thQ: xxxx xxxx xxxxx LOS by Move: * * * * В LT - LTR - RT LT - LTR - RT LT - LTR - RT Movement: LT - LTR - RT Shared LOS: * * ApproachDel: XXXXXX 11.5 XXXXXX ApproachLOS: ***** Note: Queue reported is the number of cars per lane. *********************

```
UCSC LRDP EIR Response to Comments
         2020 + Project With Balanced Volumes
        Level Of Service Computation Report
     2000 HCM Unsignalized Method (Base Volume Alternative)
Intersection #3 Hagar/East Remote
**************************
Average Delay (sec/veh): 13.5 Worst Case Level Of Service: D[ 30.8]
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
            Stop Sign Uncontrolled Include
                           Uncontrolled
Include
Control:
      Stop Sign
       Include
     0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0
Volume Module: Balanced PM Volumes
PHF Volume: 0 18 190 0 38
                  0 0
                         0
                            401 0
      0 0 (
Reduct Vol:
           0 0 0 0
190 0 38 0
                     0 0
                             0
Final Vol.:
      0 18 190
                     0 0
                          0
                            401
Critical Gap Module:
Capacity Module:
Cnflict Vol: xxxx 802 0 xxxx 802 xxxxx xxxx xxxxx
                             xxxxx xxxx 0
Level Of Service Module:
Control Del+xxxxx xxxx xxxxx xxxxx 30.8 xxxxx xxxxx xxxxx xxxx 12.2 xxxx xxxxx
LOS by Move: * * * * D * * * *
Movement: LT - LTR - RT
            LT - LTR - RT LT - LTR - RT
                            LT - LTR - RT
Shared Los:
ApproachDel: 12.9
          B * * * * * *
Shared LOS: * *
               30.8
                     xxxxxx
      12.9
               . D
```

Note: Queue reported is the number of cars per lane.

UCSC LRDP EIR Response to Comments 2020 + Project With Balanced Volumes

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) ***************************** Intersection #43 Coolidge/East Remote ********************************* Average Delay (sec/veh): 3.6 Worst Case Level Of Service: B[13.7] Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R - T - Control: Uncontrolled Uncontrolled Stop Sign Stop Sign Rights: Include Ignore Include Include Volume Module: Balanced AM Volumes PHF Volume: 212 289 0 0 229 0 30 0 55 0 0. Reduct Vol: 0 0 0 0 0 0 0 0 0 0 229 0 Final Vol.: 212 289 0 30 0 55 Critical Gap Module: -----| Capacity Module: Cnflict Vol: 229 xxxx xxxxx xxxx xxxx xxxx 942 xxxx 229 XXXX XXXX XXXXX Potent Cap.: 1345 xxxx xxxxx xxxxx xxxx xxxx 294 xxxx 815 XXXX XXXX XXXXX Move Cap: 1345 xxxx xxxxx xxxx xxxx xxxx 259 xxxx 815 xxxx xxxx xxxx Volume/Cap: 0.16 xxxx xxxx xxxx xxxx xxxx xxxx 0.12 xxxx 0.07 xxxx xxxx xxxx Level Of Service Module: 2Way95thQ: 0.6 xxxx xxxxx xxxx xxxx xxxxx 0.4 xxxx 0.2 xxxx xxxx xxxxx Control Del: 8.2 xxxx xxxxx xxxxx xxxxx 20.8 xxxx 9.7 xxxxx xxxx xxxxx LOS by Move: A * * * * * C * A * * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT * * * ApproachDel: xxxxxx ApproachLOS: * ********************** Note: Queue reported is the number of cars per lane. **********************************

UCSC LRDP EIR Response to Comments 2020 + Project With Balanced Volumes Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) Intersection #43 Coolidge/East Remote Average Delay (sec/veh): 3.8 Worst Case Level Of Service: C[17.2] ************************ North Bound South Bound East Bound West Bound L - T - R L - T - R Approach: Movement: Uncontrolled Uncontrolled Stop Sign Include Ignore Include Stop Sign Include 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 Lanes: Volume Module: Balanced PM Volumes Base Vol: 115 424 0.0385 58 55 0 130 0 0 0 0 0 0 . 0 0... Reduct Vol: 0 0 0 0 60 0 141 0 Final Vol.: 125 461 0 418 0 0 Critical Gap Module: Critical Gp: 4.1 xxxx xxxxx xxxxx xxxxx 6.4 xxxx 6.2 xxxxx xxxx xxxx Capacity Module: Cnflict Vol: 418 xxxx xxxxx xxxx xxxx xxxx 1129 xxxx 418 xxxx xxxx xxxxx Potent Cap.: 1146 xxxx xxxx xxxx xxxx xxxx xxxx xxxx 228 xxxx 639 xxxx xxxx xxxx Move Cap.: 1146 xxxx xxxx xxxx xxxx xxxx xxxx xxxx 209 xxxx 639 xxxx xxxx xxxx Volume/Cap: 0.11 xxxx xxxx xxxx xxxx xxxx xxxx xxxx 0.29 xxxx 0.22 xxxx xxxx xxxx Level Of Service Module: 2Way95thQ: 0.4 xxxx xxxxx xxxx xxxx xxxx 1.1 xxxx 0.8 xxxx xxxx xxxx xxxxx Control Del: 8.5 xxxx xxxxx xxxxx xxxxx xxxxx 29.1 xxxx 12.2 xxxxx xxxx xxxxx LOS by Move: A * * * * * D * B * * * Movement: LT - LTR - RT xxxxxx ApproachLOS: Note: Queue reported is the number of cars per lane.

BALANCED OFF-CAMPUS INTERSECTIONS

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ************************** Intersection #12 Bay/Escalona [2020 + Project (Balanced Volumes)] ******************* Cycle (sec): 80 Critical Vol./Cap. (X): 0.553 12.8 8 (Y+R = 4 sec) Average Delay (sec/veh): Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/Optimal Cycle: 34 Level Of Service: ************************ Control: Protected Protected Protected Protected Rights: Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 2 0 1 1 0 2 0 1 0 1 0 0 1 0 0 1 Volume Module: PM Peak 17 19 48 8 17 13 170 1240 35 Base Vol: 58 885 Initial Bse: 58 885 13 170 1240 35 17 19 48 8 17 86 0 0 0 0 Added Vol: 0 0 PasserByVol: 0 0 0 0 0 58 885 13 Initial Fut: PHF Volume: 64 983 14 189 1378 39 19 21 53 9 19 Õ 0 0 0 0 0 0 0 14 189 1378 39 19 21 0 9 0 Reduct Vol: 0 0 -----| Saturation Flow Module: _____|___|___|___| Capacity Analysis Module: Vol/Sat: 0.04 0.27 0.01 0.10 0.38 0.02 0.02 0.02 0.03 0.01 0.01 0.06 Crit Moves: **** **** **** Green/Cycle: 0.06 0.54 0.54 0.21 0.69 0.69 0.04 0.10 0.10 0.05 0.11 0.11 Volume/Cap: 0.55 0.50 0.02 0.50 0.55 0.03 0.55 0.21 0.33 0.33 0.14 0.55 Uniform Del: 36.3 11.4 8.4 27.9 6.2 3.9 37.8 33.1 33.5 37.0 32.4 33.9 IncremntDel: 5.7 0.2 0.0 1.0 0.3 0.0 9.0 0.6 1.2 2.3 0.3 3.9 AdjDel/Veh: 42.0 11.6 8.4 29.0 6.5 4.0 46.8 33.6 34.6 39.3 32.7 37.8 HCM2kAvq: 3 8 0 5 9 0 2 1 2 1 1 *****************

MITIG8 - 2020 PM P	roject We	ed May	10, 2	2006 08	3:07:57	7			Page	1-1
200								- -		
202	20 PM Plus	Projec		_						
	Level C									
2000 H	CM Unsignal			-		-		ive)		
*****									****	*****
Intersection #9 Emp	pire Grade/	Heller	•							

Average Delay (sec										
******			****	*****	****	****				*****
Street Name:		.ler		,	_			e Grade		
	th Bound		th Bo			ast Bo			est Bo	
Movement: L -	T - R			- R		- T			·T	
•	op Sign	•		ign			olled	Unc		
	Include		Inclu	_	OII	Incl		OIIC	Incl	
_	0 0 0			0 1	1 () 1		0 (1	
Volume Module:	'	,						1 1		'
Base Vol: 0	0 0	631	0	25	13	133	0	0	220	475
Growth Adj: 1.00	1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse: 0	0 0	631	0	25	13	133	0	0	220	475
User Adj: 1.00	1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj: 0.79 (0.79		0.79		0.79	0.79	0.79		0.79
PHF Volume: 0	0 0	795	0	31	16	168	0	0	277	598
Reduct Vol: 0	0 0	0	0	0	0	0	0	0	0	0
Final Vol : 0	0 0	795	0	31	16	168	0	0	277	598
	,									
Critical Gap Module		<i>c</i>		6.2	4 1					
Critical Gp:xxxxx 7 FollowUpTim:xxxxx 7			XXXX				XXXXX			
Capacity Module:	ŀ	ł			1 1			1 1		ı
Cnflict Vol: xxxx	xxxx xxxxx	477	xxxx	277	875	xxxx	xxxxx	xxxx	xxxx	xxxxx
Potent Cap.: xxxx			xxxx	767			xxxxx			xxxxx
Move Cap.: xxxx			xxxx	767			xxxxx		xxxx	xxxxx
Volume/Cap: xxxx x	xxxx xxxx	1.47	xxxx	0.04	0.02	xxxx	xxxx	xxxx	xxxx	xxxx
					:					
Level Of Service Mo	odule:									
2Way95thQ: xxxx							xxxxx			
Control Del:xxxxx				9.9			xxxxx			
LOS by Move: *		F	*	A	A	*	*	*	*	*
	LTR - RT			- RT		- LTR			- LTR	
Shared Cap.: xxxx x										
SharedQueue:xxxxx										
Shrd ConDel:xxxxx x Shared LOS: *	* * *	**	**	****	*		*	*		**
	xxxx		32.4	•		xxxx	•		cxxxx	-
ApproachLOS:	*		52.4 F		χ.	*			*	
*********	*****	*****		*****	****	****	*****	*****	****	*****
Note: Queue reporte	ed is the r	umber	of ca	ars per	r lane					
******							*****	*****	****	*****

2020 AM Plus Project (Campus Growth + Delaware) Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) *********************** Intersection #9 Empire Grade/Heller ************************* Average Delay (sec/veh): 5.4 Worst Case Level Of Service: D[32.5] ************************* Street Name: Heller Empire Grade Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Lanes: 0 0 0 0 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 Volume Module: 0 197 566 Initial Bse: 0 0 0 187 0 1 66 252 0 0 197 566 Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx 6.4 xxxx 6.2 4.1 xxxx xxxxx xxxx xxxx xxxxx FollowUpTim:xxxxx xxxxx xxxxx 3.5 xxxx 3.3 2.2 xxxx xxxxx xxxxx xxxxx xxxxx Capacity Module: Cnflict Vol: xxxx xxxx xxxxx 732 xxxx 248 961 xxxx xxxxx xxxx xxxx Potent Cap.: xxxx xxxx xxxxx 391 xxxx 796 724 xxxx xxxxx xxxx xxxx xxxxx xxxxx Move Cap.: xxxx xxxx xxxxx 357 xxxx 796 724 xxxx xxxxx xxxx xxxx xxxxx -----|----|-----||-------||-------| Level Of Service Module: 2Way95thQ: xxxx xxxx xxxxx 4.5 xxxx 0.0 0.4 xxxx xxxxx xxxx xxxx xxxxx Control Del:xxxxx xxxxx xxxxx 32.6 xxxx 9.5 10.6 xxxx xxxxx xxxxx xxxxx xxxxx LOS by Move: * * * D * A B * * * * * Movement: LT - LTR - RT Shared LOS: * * * * * * * * * * * ApproachDel: xxxxxx ApproachLOS: * 32.5 xxxxxx xxxxxx D ********************* Note: Queue reported is the number of cars per lane. *************************

______ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ****************** Intersection # 11 Bay/Iowa/Nobel [2020 + Project (Balanced Volumes)] ************************* Cycle (sec): 80 Critical Vol./Cap. (X): 0.552 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 43 Level Of Service: ***************** Street Name: Bay Street Iowa/Nobel
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R L - T - R ------Volume Module: AM Peak Hour Base Vol: 48 1197 69 69 14 603 23 47 69 0 0 0 0 0 0 0 0 0 0 0 0 88 52 23 Initial Bse: 48 1197 Added Vol: 0 0
PasserByVol: 0 0 0 0 0 0 0 0 Initial Fut: 48 1197 69 14 603 23 47 69 88 52 23 PHF Volume: 55 1360
Reduct Vol: 0 0 59 26 78 0 0 Reduced Vol: 55 1360 78 16 685 26 53 78 100 59 26 Final Vol.: 55 1360 78 16 685 26 53 78 100 59 26 10 Saturation Flow Module: Adjustment: 0.95 0.95 0.85 0.95 0.95 0.85 0.83 0.83 0.85 0.64 0.64 0.85 Lanes: 1.00 2.00 1.00 1.00 2.00 1.00 0.41 0.59 1.00 0.69 0.31 1.00 Final Sat.: 1805 3610 1615 1805 3610 1615 638 937 1615 843 373 1615 Capacity Analysis Module: Vol/Sat: 0.03 0.38 0.05 0.01 0.19 0.02 0.08 0.08 0.06 0.07 0.07 0.01 **** **** * * * * Crit Moves: Green/Cycle: 0.10 0.68 0.68 0.02 0.60 0.60 0.15 0.15 0.15 0.15 0.15 0.15 Delay/Veh: 34.8 6.7 4.3 60.2 7.9 6.4 34.2 34.2 31.8 32.8 32.8 29.0 AdjDel/Veh: 34.8 6.7 4.3 60.2 7.9 6.4 34.2 34.2 31.8 32.8 32.8 29.0 HCM2kAvg: 2 9 1 1 4 0 4 4 3 4 4

Traffix 7.7.0515 (c) 2005 Dowling Assoc. Licensed to KIMLEY-HORN, SAN RAMON

...... Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ****************** Intersection #7 Western/Mission [2020 + Project (Balanced Volumes)] **************************** Cycle (sec): 100 Critical Vol./Cap. (X): 0.671 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh):
Optimal Cycle: 56 Level Of Service: *************************** Street Name: Western Mission North Bound South Bound East Bound West Bound L - T - R L - T - R L - T - R Approach: North Bound Movement: L - T - R _____|___|___| Volume Module: Base Vol: 9 78 81 151 151 22 36 310 17 262 366 145 PHF Volume: 10 83 86 161 161 23 38 330 18 279 389 154 0 0 0 0 0 0 0 0 0 0 0 0 Reduct Vol: Reduced Vol: 10 83 86 161 161 23 38 330 18 279 389 154 Saturation Flow Module: Adjustment: 0.92 0.92 0.92 0.72 0.72 0.72 0.95 0.99 0.99 0.95 0.96 0.96 Lanes: 0.05 0.46 0.49 0.46 0.47 0.07 1.00 0.95 0.05 1.00 0.72 0.28 Final Sat.: 93 807 839 638 638 93 1805 1787 98 1805 1302 516 -----|----|-----| Capacity Analysis Module: Vol/Sat: 0.10 0.10 0.10 0.25 0.25 0.25 0.02 0.18 0.18 0.15 0.30 0.30 Crit Moves: **** **** **** IncremntDel: 0.2 0.2 0.2 3.5 3.5 3.5 20.0 3.4 3.4 4.3 1.6 1.6 HCM2kAvq: 4 4 4 13 13 13 2 10 10 9 13 ************************

Intersection #21 SR9 / SR1 ************************* Cycle (sec): 135 Critical Vol./Cap.(X): 1.283 Loss Time (sec): 16 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 180 Level Of Service: ************************* Street Name: SR 9 SR 1 Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----| -----| Volume Module: PM Peak Base Vol: 163 297 471 826 297 202 280 2128 137 476 2284 575 Initial Bse: 163 297 471 826 297 202 280 2128 137 476 2284 Added Vol: 0 0 0 0 12 31 272 0 0 108 Marine Labs: 0 0 0 0 0 4 7 134 0 0 74 Ω Initial Fut: 163 297 471 826 297 218 318 2534 137 476 2466 575 Reduced Vol: 175 319 506 887 319 234 342 2722 147 511 2649 618 -----||-----||------| Saturation Flow Module: Adjustment: 0.95 1.00 0.75 0.92 1.00 0.85 0.95 0.91 0.85 0.92 0.91 0.85 Lanes: 1.00 1.00 2.00 2.00 1.00 1.00 1.00 3.00 1.00 2.00 3.00 1.00 Final Sat.: 1805 1900 2842 3502 1900 1615 1805 5187 1615 3502 5187 1615 Capacity Analysis Module: Vol/Sat: 0.10 0.17 0.18 0.25 0.17 0.14 0.19 0.52 0.09 0.15 0.51 0.38 **** **** Crit Moves: * * * * Green/Cycle: 0.14 0.14 0.14 0.20 0.20 0.20 0.15 0.43 0.43 0.12 0.40 0.40 Volume/Cap: 0.70 1.21 1.28 1.28 0.85 0.73 1.28 1.23 0.21 1.23 1.28 0.96

Note: Queue reported is the number of cars per lane.

E

LOS by Move: E F F F E E F F C F F HCM2kAvgQ: 8 23 22 33 15 11 26 65 4 19 67